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Summary. A general method for the study of  point and extended defects in 
non-metals has been formulated and a substantial computer program generated 
to allow the study of  such systems in a routine manner. This method requires 
only a single ansatz; this is the effect of  the defect in question is appreciable only 
in the immediate proximity of the defect. Beyond this region, the influence of the 
defect may be obtained from a simple response theory, which may be linear but 
is not required to be so. This response is manifested as a displacement of the ion 
cores and by the polarization of  these atoms. This situation is considered in a 
mathematically rigorous extension of  the local orbitals method of  Adams-  
Gi lber t -Kunz,  using the approach defined by Kunz-Klein .  This approach 
ultimately defines the system in terms of building blocks for the system, which 
may be defined in some arbitrary way. These building blocks form a natural 
point for parallelization of a computer code, and such has been simply accom- 
plished. Each building block in turn is studied using slightly modified quantum 
chemical techniques at the Har t r ee -Fock  and Moller-Plesset levels. These 
techniques are also parallelizable and such has been done. Thus a potential two 
levels of  parallelization may be used here, and this makes possible an ultimate 
use of large-scale MIMD parallelism. 
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1. Introduction 

Lattice defects in or on crystalline materials, determine many technologically 
important properties. Reliable computer simulations of  such defects are of 
potential value, and may be expected to contribute to a fundamental understand- 
ing of the physical processes that determine the structure and properties of these 
materials. In the case of point defects, it is attractive to use quantum mechanics 
to describe the region of  the crysta 1 in proximity to the defect, perhaps embed- 
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ding this region in an external potential determined by some auxiliary principle. 
The hope here is that the response of the lattice to the point defect may then be 
described by some method which is simpler than the quantum mechanical 
method used to describe the point defect itself. It is noted parenthetically, that 
the definition of simpler, as used here, is that it be computationally less 
expensive to use. Similar considerations apply in a similar way to the case of 
adsorbates on solid surfaces. Models which may accurately describe the re- 
sponse of an embedding lattice do currently exist. In the present case we begin 
our development for the case of non-metals. In many studies performed prior 
to the present for such systems, the use of a classical shell model, based upon 
point charges, and masses, interacting by simple parameterized potentials has 
been successful in correlating perfect-lattice equilibrium data with the ground 
state properties of defects in these systems [1, 2]. Therefore, we begin our study 
by choosing to think of the embedding lattice in terms of the classical shell 
model. We find that it is possible to retain the functional form of the shell 
model, but determine all needed parameters from the quantum mechanical 
calculation, and to augment this functional form with appropriate angular 
potentials as well. The region about the defect can be described by means of an 
unrestricted Hartree-Fock method [3] (UHF). Such a model will in practice 
not yield sufficient accuracy for our purposes, and is extended by the implemen- 
tation of a Many-Body Perturbation-Theory method (MBPT). By this choice, 
we will separate the problems of exchange from those of correlation, rather 
than combine them as is often the case in a computation based on the density 
functional method [4]. 

In the case of producing a technological approach, one must have in mind 
that the process be computationally accurate and also computationally inexpen- 
sive. This latter consideration is needed because one may envision studies of a 
great many physical situations. In such an event speed and efficiency not only 
minimize the computational cost but also the tendency of the researcher to 
fatigue or boredom. The way we are considering to speed up our computations 
is to invoke parallelism, hopefully in a massive way. The initial attempts for Solid 
systems are described here. 

In the case of a cluster embedded in a classical lattice, special care needs to 
be taken to ensure that mathematical consistency is achieved between the cluster 
and the embedding lattice. This has been solved formally by the work of Kunz 
and Klein [5], who achieve this through the introduction of a localizing poten- 
tial, here called the Kunz-Klein localizing potential or KKLP. 

Simulation of a large crystallite or an infinite lattice containing a point defect 
represented by a cluster and a polarizable embedding lattice is implemented here 
by means of an energy minimization procedure. That is, one minimizes the total 
system energy with respect to all parameters that define the lattice and the 
electronic configuration. For those parts of the lattice described by the shell 
model, one must minimize the total energy with respect to the positions of the 
ion cores, and also with respect to the polarization of the ions individually. For 
the quantum mechanical cluster, energy minimization is carried out with respect 
to the nuclear positions and also the electronic configuration. In this method it 
is possible to study states other than the ground state. Since the primary physical 
outputs are total energies and geometries, spectroscopic data is obtained from 
total energy differences. Positional variations are carried out initially using the 
HADES approach as implemented in the ICECAP procedure, or more recently 
using a Monte Carlo approach [6]. 
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In the next section of this paper, we describe the basic theoretical ideas used in 
this study. This will include the shell model lattice, the UHF method, the K K L P  and 
the inclusion of correlation via MBPT. The evocation of parallelism may be on two 
levels, and both are considered here. The first is in a global sense, that is over the 
chemical building blocks created in the Kunz-Kle in  partitioning into fragments. 
Largely the computation of each fragment proceeds independently of each other 
fragment, although there is some small amount of data interchanged. The second 
level of parallelism is within the individual fragment. This is also possible to 
demonstrate, and is done here. Combining both levels may well enable the use of 
massive parallelism provided a MIMD computer system is available. There are 
techniques which we consider in our laboratory which may significantly reduce the 
cost and complexity of such computations. 

2. Theoretical methods 

In these studies, we assume that we have a system consisting of n electrons and N 
nuclei. The n electrons have coordinates designated by xi and mass, m, and charge 
e. The nuclei have coordinate R~, and nuclear charge Zx. In these studies, the 
Born-Oppenheimer approximation is used and thus the nuclear mass is treated as 
infinite. The electron coordinate includes spin degrees of freedom. In general 
lower-case letters refer to electron attributes, while upper-case letter refer to nuclear 
properties. In this study the atomic system of units is used. That is; Planck's 
constant, the electronic charge, and the electronic mass are set to unity. Thus, the 
unit of length is approximately 0.53 × 10 8 cm, and the unit of energy is 
approximately 27.2 eV. In the usual non-relativistic formalism, the Hamiltonian for 
the system is: 

h 2 Z ,e  2 ~ e 2 .  

Ideally one would like to solve the n-electron Schroedinger equation for this 
Hamiltonian: 

H~J(2i, Xi ) = E~J(2i, Xi ) (2) 

but computational difficulties preclude this. Instead we will resort to a series of 
approximations beginning with the UHF approximation. In the UHF approxima- 
tion, the n-electron wavefunction is approximated by an antisymmetrized product 
of one electron orbitals. These orbitals are chosen to be orthonormal, and to 
minimize the energy expectation value of the Hamiltonian with respect to the 
functional form of these orbitals. This set of approximations leads to the system of 
equations called the UHF equations: 

F(e)~o, (2) = e,~0, (2) (3) 

e2 e2 ~" Q(I~'~ ,) 
F(e) = --2-m -- ,=1 

1 
-- e 2e(.~2') - -  ^ "'2 (4) i~_~,)P(X ) 

~ ( ~ ' ) =  y. ~0,(~)~o+(~ ') (5) 
i <:/fermi 

fq~* d~ = (6) 5 u • 
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This series of equations may be solved in matrix form using a basis set expansion 
in terms of contracted gaussian basis orbitals. This procedure is so standard as 
to require no further discussion here. The one possible key to the parallelization 
of the matrix equations is to note that the needed integrals over contracted basis 
functions are all independent of each other. Thus one may parallelize the integral 
generation simply by partitioning out the needed integrals over the available 
processors. The use of the integrals in the UHF sequence is also independent in 
this way. Therefore one may fill a partial Fock matrix on each processor and 
only amalgamate the matrices at the final step. In this way the parallelization of 
the Fock problem is rapidly accomplished. My group has developed this process 
for a Ghost Cube of Suns, an Ametek $2010, and the Intel Hypercube. 

The practical problem is to be able to solve this set of equations for extended 
systems. In the case of the pure, perfect, periodic system, techniques of energy 
band theory may be used [7]. However, we wish to be able to consider defects as 
well. There are methods to study some defect cases based upon periodic 
super-cell methods [8], but in our case the study of charged defects in insulating 
solids is envisioned. Such studies don't lend themselves well to super-cell 
methods due to the infinite range of the coulomb potential. Instead, we resort to 
the older method of local orbitals introduced formally by Adams [9], and Gilbert 
[10], and given a computational formulation by the author [11]. In this method, 
we formally divide the system into two parts, the cluster, and its environment. 
The cluster in practice contains the defect or impurity in question as well as the 
first few shells of atoms surrounding the defect. The environment contains the 
remainder of the system. 

The Hamiltonian is formally partitioned into two parts, FA, the cluster 
Hamiltonian, and VA, the Hamiltonian for the environment. These are formally: 

r. .f,~,. 
h2 V2-- E ZIe2 IQA[ ) .+ ,  

Fa = 2m ] i 7 ~ i ]  + 

1 
- e2eA(~C~ ') ~ p ( ~ ' ~ )  (7) 

VA = - F - F A .  (8) 

We may further divide the term VA into two parts. The first is due to the ionic 
nature of the individual atoms, if any, and is called VM, and the part due to the 
non-ionic nature of the atoms, a short range part termed UA. Having done this 
we may formally consider the Adams-Gilbert modified UHF equation: 

[F + oAolgO A, = ~Ai~g Ai. (9) 

This equation is simply a canonical transformation on the orignal UHF equation 
[ 10], and its solution forms a first order density matrix identical to that of the 
original UHF equation, and leaves the total system energy unmodified. 

In the present implementation, one will choose the arbitrary operator, A, to 
be -UA. Therefore, we solve the one-electron equation: 

[FA + VM + Ua -- oUAo]~gA, = gAi~Ai" (10) 

In this implementation the term QUA 0 tends to cancel the term UA in the original 
UHF operator, and allows the cluster to localize a number of electrons in it. The 
remainder of the electrons are of necessity delocalized into the environment. One 
may naturally play the same localization trick on the environment electrons as 
well. 



Computational considerations for the study of defects in solids 357 

The term 0 UA 0 is called the KKLP due to its operational effect. The strategy 
of solution is as follows: Begin with the pure, perfect, periodic lattice. Divide this 
lattice into some set of natural building blocks. One's intuition will normally 
dictate a good choice of building blocks. For example, in the case of crystalline 
NaC1, a natural set of building blocks are the systems Na +, and C1-. These are 
not free space ions but rather ions self consistently distorted by the crystalline 
environment. We assume that the orbitals associated with ions situated suitably 
far from the defect are the same as for the ions of the pure, perfect, periodic 
crystal. We do not assume that they sit at perfect lattice sites, and allow the 
potential due to them to be further modified by a polarization contribution. 

The implementation of parallelism within the basis Local Orbital procedure 
is trivial. The building blocks are almost independent of each other. They 
interact in a mathematical sense only through the knowledge of each other's first 
order density matrix. Therefore one can parallelize on a grand scale by treating 
each block in parallel, and exchanging first order density matrix information 
only as every building block becomes self consistent with the first order density 
matrix information of the other building blocks. In this way the computational 
time exceeds the data transfer times by many orders of magnitude. This is even 
true using a Ghost Cube of Sun workstations connected by ethernet. It is 
additionally possible to implement parallelization of the individual UHF Prob- 
lems as outlined previously. 

In the above discussion, we used the one electron approximation exclusively. 
This is found to be of inadequate precision for our needs and therefore, we seek 
to include explicit electron correlation in the cluster computation. This is most 
easily achieved by the use of a MBPT formalism. This is a natural choice in some 
ways for a solid system due to the simple fact that the MBPT method is extensive 
(size-consistent) [13]. 

The essential features of this approach are demonstrated by consideration of 
the non-degenerate state case. Extension to a degenerate system can be obtained 
as well, although the practicalities of implementation are far less simple. In any 
event, for the cases needed here nondegenerate perturbation theory is adequate. 
Consider a Hamiltonian, H, which is partitioned into two parts, a zero order 
Hamiltonian, H0, whose eigenvalues and eigenvectors are known, and a pertur- 
bation, V. Thus: 

g - - H o +  V (11) 

and 

Ho~i =Wi~i.  (12) 

From these solutions we may construct the eigenvalues, and eigenfuncfions of 
the total Hamiltonian. That is we formally solve the correct equation:, 

H~,  = E ~ ,  (13) 

finding that 

~; = [1 - ( O o -  Wi)-~(1 - P x ) ( g -  V -  W;)] - %~i (14) 

and 

E I =  W, + + ( IlV(Ho- W o ) - ' ( 1 -  + "  " . (15) 

In the present case we need to properly pick a Ho. This is usually chosen in such 
calculations to be the sum of the one body UHF operator, as in Moeller-Plesset 
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perturbation theory, however, we do not necessarily know the canonical UHF 
solution, only a canonical transformation of it. We therefore know only the 
eigenfunctions and eigenvalues of the Adams-Gi lber t -Kunz  Eq. (10). We chose 
the sum of these one body equations to be our zero-order Hamiltonian. This 
allows a formally tractable solution to be obtained. This solution through second 
order becomes simply: 

_t t y <+,1 vl+ > 
E1 G- G (16) 

This is the correlation correction used in our work. The invocation of parallelism 
is simple here in that the MBPT correction at the second order may be made in 
parallel for each integral. This has been implemented by us and is perhaps the 
most nearly ideal parallel implementation to date, at least for small-scale 
parallelism. 

3. Parallelization results 

The essential consideration initially here is Amdahl's law. This is seen as placing 
a limit on the value of parallelization, as Amdahl rightly assumes that for a given 
size problem, when all efficiency is gained from parallelization, there still remains 
a portion to do that doesn't parallelize. Thus parallelization can only provide a 
certain potential gain until the parts of the problem that don't  parallelize 
dominate. Thus it is useful to consider the parallelization strategy carefully to 
ascertain its likely efficiency. In this task one need also consider the points raised 
by the work of John Gustafson [14]. John observes that the point of parallel 
development is to enable the solution of problems beyond our current capability. 
Thus consideration of how the problem parallelizes as a function of problem size 
is essential. 

Consider the current case as an example. There are several possibilities once 
one has developed a strategy. The typical program has several parts. These may 
briefly be identified as: 

1. NP, these are program parts that don't readily parallelize. 

2. NWE, these are program parts which parallelize, but for which the speed 
gains are not worth the effort. 

3. NYD,  these are program parts which parallelize, and are worth the effort, but 
for which the work of parallelizing is not yet done. 

4. P, these are program parts for which functioning parallel code has been 
generated. 

To see how this works as a function of problem size, keeping in mind the 
ultimate aim is to solve problems on a parallel machine which are too large to 
solve on a current uniprocessor, we examine the lcoal orbital problem as a 
function of problem size. Since we have two levels of parallelism we must be 
careful. In the case of the overall local orbital procedure, termed LOPAS, the 
size element is the number of building blocks. Within a building block, we 
consider four essential program elements, the symmetry study called LISTER, 
the generation of molecular integrals over contracted functions called POLY, the 
self consistent field solution called SCF, and the computation of the correlation 
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energy called MBPT. For  all four segments in our strategy the size element is the 
number of  basis functions. There is a fifth element as well, and this is the 
classical embedding lattice. For  this segment, we haven't considered the process 
of  parallelization yet. 

Let the size element be N. This is true whether the size refers to the number 
of building blocks or the basis set size. The problem then breaks into our parts 
as follows: 

NP NWE NYD P 
LOPAS N 
LISTER N N 3 
POLY N N 2 N 4 
SCF N N 2 N 3 N 4 
MBPT N N 5 

It is clear from the above that in all cases the portions which parallelize 
increase in computational intensity far more rapidly with size than do the 
portions which are not parallelizable or which are not worth the effort. Thus, this 
is an excellent program series from the aspect of parallel development. The real 
remaining question is how well we did do. In this our tests are limited by the 
equipment on hand. The sequence LISTER, POLY, SCF, MBPT was rested on 
an Intel Hypercube, the Ametek $2010, and a Ghost Cube of  Sun Workstations. 
The most efficient by far was the Ametek $2010. This is partly because a disk 
drive was available internal to the parallel computer itself and communications 
to the outside were avoided as were necessary with the other two setups. 
Unfortunately, the $2010 had only 6 nodes and one internal drive, limiting our 
ability to fully test the code. The results presented here are for the KrF2 
molecule. A rich basis is used including s, p, d, and f orbitals on the Kr and s, 
p, and d orbitals on the F. The results for the molecule were most satisfactory. 
Times are total parallel system times and are given in seconds as a function of  
the number of parallel processors. 

The second phase of the test consisted of the study of  the ability to paralMize 
the LOPAS sequence. In this case communication speed is not very important as 
the ratio of computation to communication is high. Therefore almost any 
reasonable parallel system works. However, this phase is not a candidate for a 
large number of  processors, as the natural size parameter is the number of  
building blocks. The additional parallelism being gained within the blocks as 
outlined above. Thus the ideal processor for this step is itself a parallel machine. 
In our test then the data was obtained for a Ghost Cube of Sun Sparc 1 
Workstations. In this test there are four building blocks, each a Methane 
molecule but the four cited so that there are four distinct methanes by virtue of 
environment. The workstations were on various faculty desk tops and faculty 
use of  the stations was not curtailed for the test. In fact the four faculty 
were unaware that their systems were being used until after the test. The results 
were: 

1 Sparc Station 412 sec. 
2 Sparc Stations 204 sec. 
4 Sparc Stations 112 sec. 

From this result we see that the parallelization of such a sequence is possible at 
two separate levels. The ideal would be to use both levels simultaneously. 
Unfortunately, our equipment inventory to date has not allowed this to occur. 
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Table 1. The computer times for various numbers of processors on a 
Ametek $2010 are given for the various steps in a LOPAS calculation. Times 
are total time and are in seconds. Relative times are also given. In this event 
the 2 processor time is defined as unity 

No. Processors 2 4 6 

502 
LISTER 1 

15942 7342 5017 
POLY 1 0.46 0.31 

21156 11149 9471 
SCF 1 0.53 0.45 

14236 7162 4846 
MBPT 1 0.50 0.34 

The results seen in Table 1 for the speedup upon using several processors is 
not unreasonable. However, there is one odd feature here, this is the slight 
superlinear speed increase exhibited in the POLY code demonstrated here. We 
are unable to give a complete understanding of this particular result. The 
S-2010 system had only one node with a disk drive attached, and this unusual 
result may in some way reflect upon the efficient use of the I/O subsystem as 
more use of it is made per unit time in the POLY code sequence. On the other 
hand, it may simply reflect some not understood peculiarity in the operating 
system of the S-2010 processor. In any event, the author is convinced that this 
superlinearity is not some special feature of  the coding technique used here. 
The second place in which some superlinearity is seen is in the LOPAS portion 
upon running the code on 1 then 2 then 4 workstations. In going from 1 to 2 
workstations, the speed increase seems to be superlinear. This may in this case 
be attributed to the fact that the workstations in question were in use by their 
owners as normal workstations, as well as a node on a more global parallel 
machine. Therefore, the times reflect in some measure the use levels of the 
local person as well as the usage for this test. In this latter case small time 
deviations are not indicative of performance issues, but rather an indication of 
test conditions. 

4. Conclusions 

It is possible to approach the solutions to solid-state problems by use of standard 
molecular techniques which are slightly modified to include the necessary KKLP.  
In this way a canonical transformation is used to enable a solution to the 
solid-state problem in terms of local orbitals, and which also preserves the energy 
minimization of the SCF scheme. This enables a strategy of efficient computer 
usage based upon parallelism. This occurs on two levels. The first and largest in 
granularity is over the chemical building blocks within the LOPAS scheme itself. 
The second level is within the molecular sequence itself. In this case the 
independence of integrals over contracted basis functions is used. Both levels 
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may be done simultaneously provided the computational equipment permits. In 
fact, this may well be a preferred method as the number of processors assigned 
to a building block can compensate for differences in building block size. 
Small-scale demonstrations of the effectiveness of these schemes are given, and 
good speedups upon parallelization are seen. 
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